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Abstract: Augmenting the global efforts towards HIV control and prevention, spatial modelling helps identify areas with 
poor viral suppression to inform programme planning. This study aims to describe the spatial viral suppression and viral 
rebound trajectories among ART patients. This is the first application of the fully Bayesian geoadditive semiparametric 
multistate Markov models to account for unobserved geographical heterogeneity. Time-varying log-baseline effects of 
the transition intensities and non-linear effects of continuous covariates were estimated as smoothed functions of time 
using penalised splines. Non-parametric effects of fixed covariates and frailty effects to account for individual variability 
were also considered. Viral load was the preferred marker for better prediction of HIV/AIDS disease progression; 
therefore, a three staged model was proposed bases on two viral load transient states defined by undetectable viral cut-
off limits and death as the third absorbing state. Model application was based on the routinely collected individual-level 
data of ART patients from the Zimbabwe national ART programme. Amongst 18,150 participants, both the log-baseline 
transition rates of attaining undetectable viral suppression and attaining a viral rebound increased with increase in ART 
duration. Viral rebound transition was significantly prevalent among patients living on the long-distance truck route region 
(Matabeleland North province) which borders with Botswana and Zambia. Interventions which address health literacy 
and misconceptions over ART benefits and the gravity of attaining and sustaining viral suppression are a priority in the 
fight of HIV to increase patients’ life expectancy and lower HIV transmission. 
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1. INTRODUCTION 

Multistate models are useful in the management of 
chronic diseases since intermediate transitions give 
quick insights into the complex pathways patients 
experience before the final event, death, occurs [1]. 
Regarding Human immune-deficiency virus (HIV) 
infections, multistate models can be used to evaluate 
the performance of antiretroviral therapy (ART) 
programmes and identify patients who are at a high risk 
of immune deterioration so that appropriate 
interventions can be implemented. 

Numerous studies assessing HIV disease 
progression using multistate models have used the 
frequentist estimation approach implemented in R 
using the msm package [2]; however, these frequentist 
multistate models have some limitations. Firstly, they 
are unable to account for unexplained individual 
heterogeneity in transition rates which may be 
represented by the random-effects model. Accounting  
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for individual variation is crucial in infectious disease 
modelling since individuals respond differently to 
treatment  [2]. Secondly, frequentist multistate models 
are restrictive on the types of covariates they can 
handle, as the functional form of the effects of the 
predictive factors is assumed to be linear (or log-
linear). As a result, the effects of the covariates may be 
poorly estimated and penalized-splines (P-splines) may 
better estimate non-linear functions for these 
covariates. Such errors in covariate misspecification 
may lead to inaccurate statistical conclusions, 
increased bias in estimates and decreased statistical 
power for statistical significance tests [2]. Besides, 
most of the previous studies focusing on HIV disease 
progression have used CD4 cell count measurements 
to define the finite number of states which is known to 
have measurement error; hence, may not be sensitive 
enough to assess HIV disease progression [3]. In line 
with the global recommendation to use viral load in HIV 
monitoring, a recent study confirmed the superiority of 
viral load measurements in predicting ART outcomes 
compared to CD4 cell counts [4].  

The work by Kneib and Hennerfeind (2008) [5] on 
the use of Bayesian inference in multistate models 
forms the basis of this study analysis [5]. In this model, 
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the transition (hazard) rates are estimated in a 
multiplicative Cox-type way whereby the nonparametric 
effects of the log-baseline hazard are simultaneously 
estimated with other predictor components and 
assumed to be time-varying. The flexible linear 
predictor of the model can handle non-linear effects of 
continuous covariates modelled using P-splines [6]. 
Additional components may include covariates with 
time-varying effects; non-linear effects of a continuous 
covariate modelled non-parametrically with a 
smoothing function; parametric fixed effects and frailty 
terms [5]. However, to our knowledge, no studies have 
included the spatial random effects in the flexible 
predictor using multistate models; hence, this current 
study aims to incorporate the spatial covariate in a 
multistate model framework which is crucial to account 
for unobserved heterogeneity. Despite the recent 
emerging of spatial modelling in HIV monitoring 
indicators [7], there has not been extensive use of 
spatial data on time-varying viral suppression and time-
varying viral rebound indicators to monitor HIV disease 
progression among ART patients. 

The World Health Organization (WHO) HIV 
monitoring guidelines recommend the use of viral load 
which also became one of the indicators in the UNAIDS 
90-90-90 fast track targets whereby 90% of all people 
living with HIV (PLWHIV) know their status, 90% of 
those who know their status receive ART and 90% of 
those on ART achieve viral suppression [8]. In 
Zimbabwe, only 73% of ART patients were estimated 
to be virally suppressed in 2018, which is a concern for 
HIV prevention and control in the country [9]. With the 
global quest to achieve zero new HIV infections by 
2030, the focus is on attaining an undetectable viral 
load among HIV-infected population since undetectable 
HIV results in un-transmittable virus (U=U) [10]. The 
use of viral load monitoring in HIV disease progression 
is important to enhance understanding of HIV infection 
to the various stakeholders and provides a motivation 
on the need of encouraging ART adherence. 
Therefore, it is imperative to understand the viral sup-
pression and viral rebound (HIV disease progression) 
patterns among ART patients. With the scarce 
resources in low-middle income countries like Zim-
babwe, it was also of interest to be able to link these 
transition trajectories to the geographical regions to 
pinpoint high burdened areas so as to guide resource 
allocation and to inform policy on targeted inter-
ventions; hence, the inclusion of the spatial frailty term.  

This manuscript aimed to describe the spatial 
heterogeneity of viral suppression to undetectable 

levels and viral rebound to detectable levels trajectories 
among ART patients using the Bayesian semi-
parametric geoadditive multistate model. The model 
was fitted on patient-level data from the Zimbabwe 
national ART programme for patients who initiated ART 
between 2004 and 2017. In addition to the non-linear 
continuous covariates, the model accounted for time-
varying transition rates and individual heterogeneity 
which reflects the reality. The spatial component 
assumed that the viral load transitions were likely to be 
induced characteristics of geographical units, which 
may depend on neighboring regions but may as well be 
heterogenic. We hypothesized that there is spatial 
heterogeneity of viral suppression and rebound in this 
cohort and these transition rates change with time. 
Findings from this study may provide additional 
information on HIV disease progression and give a 
proxy on how well the ART patients are adhering to 
ART so as to achieve un-transmittable virus levels. The 
knowledge gained from this analysis may also be used 
to encourage HIV patients to understand the 
importance of ART adherence.  

Data management and preliminary analyses were 
handled in Stata Statistical Software Version 15.1 [11]. 
Inference procedures were implemented in free 
BayesX software package Version 3.0.2 [12] using 
Markov Chain Monte Carlo (MCMC) simulation 
technique. Results visualization was performed in 
RStudio [13]. The rest of the paper is structured as 
follows: Section 2 describes the fully Bayesian 
multistate model formulation (likelihood, prior, 
posterior), MCMC inference, model validation and 
diagnostics; Section 3, we apply the proposed model 
to the Zimbabwe national ART program data collected 
over 13 years; and Section 4, we discuss the 
advantages of these models and highlight the Public 
Health and statistical implications of our findings. The 
Supplementary material provides additional detail to 
Section 2 in addition to the BayesX code used. 

2. BAYESIAN GEOADDITIVE MULTISTATE MODEL 

2.1. Description of the Multistate Model 

In this study, we considered a time-continuous 
Markov process 

  
X t( ) ,t ! 0{ }  

with two reversible 

transient states and one absorbing (death) state 
defining the finite states 

  
S =1,2,3( )  as depicted in 

Figure 1. The viral load cutoff points were based on 
guidelines for undetectable viral load [10], that is, 
“undetectable viral suppression (<50copies/mL)” state 
as state 1, “detectable viral rebound (≥50copies/mL)” 
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state as state 2 and the absorbing state, death, as 
state 3.  

The multistate model is described by a group of 
individual-specific hazard rates 

  
! jk ,i t( )  where  jk , 

  
j =1,2,..., J  and k =1,2,..., K( ) , indexes the type of 

transition from state  j  to  k  and   i =1,2,3,...,n  indexes 
the individuals. These hazard rates are specified in 
analogy to hazard rates for continuous-time survival 
analysis (Appendix 1-4) in a multiplicative semi-
parametric regression model way: 

  
! jk ,i t( ) = exp " jk ,i (t)( )            (1) 

where 
  
! jk ,i (t)  is an flexible additive predictor expressed 

as 

   

!
jk ,i

t( ) = g
jk ,0

t( )+ g
jk ,r

r=1

L

" t( )ur ,i t( )+ f
jk ,r

r=1

R

" t( ) xr ,i t( )

+vi t( )# $ jk + f
jk ,spat

t( ) si( )+ bjk ,i

.       (2) 

This flexible predictor’s components are defined as: 

i. A time-varying, nonparametric baseline effect 

  
g

jk ,0
t( )  

mutual for all observations. Generally, in 
the conventional Cox approach, the baseline 
hazard 

  
! jk ,0 (t)  remained unspecified; however, 

in this model, the baseline hazard is 

reparameterised through 
  
g jk ,0 (t) = log ! jk ,0 (t)( )  

function (Appendix A3). Instead of modelling the 
hazard rates through a piecewise exponential 
model assuming that all time depended values 
are piecewise constant [14], this study estimated 
the non-linear shape of the log-baseline effect by 
a P-spline prior of arbitrary degree with a 
second-order penalty [15].  

ii. Covariates 
  
ur ,i t( )  

with time-varying effects 

  
g

jk ,r
t( ) . However, in this study, covariates with 

time-varying effects were not included in the 
model since no time-varying covariates were 
included in the received dataset. 

iii. Non-linear effects 
  
f jk ,r t( ) xr ,i t( )  

of a continuous 

covariate 
  
xr ,i t( ) . In this study, we considered 

individual age in years as a continuous covariate 
modelled non-parametrically with a smoothing 
function 

  
f jk ,r t( )  as it is directly proportional to 

time. Similarly, these non-linear effects were 
modelled by the P-spline prior. 

iv. Parametric fixed effects 
 
! jk  

of covariates 
 
vi t( ) . 

The vector of the regression coefficients 
  
! jk ,c  

contains the usual linear effects of the vector of 
fixed effects 

  
vi t( )  which were WHO clinical 

stages (I/II or III/IV) and gender (male or female) 
in this study. 

 
Figure 1: The schematic presentation of HIV disease progression stages multistate model and the corresponding individual-
specific transition intensities. 
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v. The spatial structural effects 
  
f jk ,spat t( ) si( )  which 

form the unique part of our multistate model, 
where   s =1,2,...,S  is a spatial index, with is s= if 
individual  i  is from region or site  s  to account 
for spatial heterogeneity assuming a Gaussian 
Markov random field (GMRF) prior. The spatial 
effects in this study where split into two 
components, that is, 

  
f jk ,spat t( ) si( ) = f jk ,str t( ) si( )+ f jk ,unstr t( ) si( )  

where 

  
f jk ,str t( ) si( )  

defines the structured (correlated) 

part and 
  
f jk ,unstr t( ) si( )  

 defines the unstructured 
(uncorrelated) part.  

vi. Random effects (frailty) term 
  
b

jk ,i  
was included to 

account for individual-specific unobserved 
heterogeneity.  

Additional information on model components is 
provided in Appendix 5. 

To estimate viral suppression, viral rebound and 
mortality transition rates; and determine the associated 
spatial heterogeneity of these transitions, the model in 
Figure 1 assumed that: a patient initiated on potent and 
effective ART treatment may become virally 
suppressed to undetectable virus levels, may have 
detectable viral rebound due to poor adherence or 
treatment failure, ART defaulting or treatment failure; or 
may die from any of the states. Baseline characteristics 
effects (WHO clinical stage at ART initiation and 
gender) were adjusted for in addition to the spatial and 
individual frailty terms. Therefore, the four transitions 
estimated were:  

  

!
A ,i

(t) = exp
"

A ,i
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A ,0
t( ) + f
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(3) 

where A defines the viral rebound transition, B defines 
the undetectable viral suppression transition, C and D 
defines the mortality transition from undetectable virally 
suppressed and viral rebound states, respectively. 

2.2. The Likelihood Function 

The likelihood contribution in a multistate model for 
each individual   i =1,2,3,...,n  is derived from a counting 
process 

  
N jk ,i t( ) , counting  j  to  k  transitions for 

individual  i . If we consider   Siz ,z =1,2,...,mi  as the 
individual transition times corresponding to a transition 
process under the non-informative censoring, the 
intensity process of the counting process is defined as 

  
! jk ,i = I jk ,i t( )" jk ,i t( )  where 

  
I jk ,i t( )  

is the predictable at 

risk indicator process and the hazard rate 
  
! jk ,i t( )  

defined as in Equation (1). Therefore, the individual 
log-likelihood function is given by: 

  

log Li ! ,",# 2( ) =

log $ jk ,i t( )dN jk ,i t( )% $ jk ,i t( ) I jk ,i t( )dt
0

Si,mi&( )0

Si,mi&'()
*
+,

jk=1

JK

-      (4) 

where 
  
!  = "! jk ,1 , "! jk ,2 ,..., "! jk ,d( )" for c =1,2,...,d  is a vector of 

all fixed effects parameters,   
! = ! jk ,1,! jk ,2 ,...,! jk ,p( )"  is a 

vector of (regression) coefficients, 

  
! 2 = ! jk ,1

2 ,! jk ,2
2 ,...,! jk ,y

2( )" for q =1,2,..., y is a vector of all 

variance components under consideration and 
  
Si,mi

 

denotes the time until an individual  i  has been 
observed. In survival models, the first term can be 
viewed as the log-hazard for uncensored data while the 
second term reflects the cumulative intensities.  

Alternatively, the likelihood can be defined in terms 
of each individual contributions defined in terms of 
transition censoring indicators 

  
! jk ,i (t)  which is equal to 

one if a  jk  transition occurs before time 
 

t( )  and zero 
otherwise and the observed transition times 

  Siz ,z = 0,1,...,mi  defined by the time an individual 
experience the transition. The alternative log-likelihood 
formula is given by: 

  

log Li (! ," ,# 2 ) =

$ jk ,i Siz( ) log % jk ,i Siz( )( )& I jk ,i Siz( ) % jk ,i (t)dt
Si ,z=1

Siz

'
(

)
*
*

+

,
-
-j ,k=1

JK

.
z=1

m

.
      (5) 

where 
  
! jk ,i (t)  is defined by Equation (1) and this whole 

expression reflects the commonly known hazard rate 
models fitted for continuous survival times. If the 
degree of the P-spline prior for the log-baseline hazard 
function is greater than one, then the likelihood integral 
can no longer be solved in a closed form. Detailed 
steps of the log-likelihood are provided in Appendix 6.  

2.3. The Prior Specifications 

We performed a fully Bayesian inference since all 
unknown parameters were assigned prior information. 
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We assigned non-informative diffuse prior, 
 
P !( )" const  

to the fixed-effects parameters; alternatively, a weak 
(large variance) normal prior can be used. The 
individual random effects 

  
b

jk ,i  
were assumed to be 

independent and identically distributed (iid) Gaussian 
distributed with a transition specific precision, 

  
b

jk ,i
~ N 0,! jk ,b

2( ) . Priors for the random effects 
(regression) coefficients parameter vector 

  
! jk ,r   for r = 0,1,..., p  were assumed to be Gaussian 
distributed computed as a product of conditional 
densities defined by the random walk smoothness 
priors. The general form of the prior for 

  
! jk ,r  

is given 
by: 

   
P ! jk ,r / " jk ,r

2( )# exp $
%! jk ,rW jk ,r! jk ,r

2" jk ,r
2

&

'
(
(

)

*
+
+          (6) 

where 
   
W jk ,r ! 0  is a precision or penalty matrix of rank 

   
W jk ,r( ) = hjk ,r

. The variance 
  
! jk ,r

2

 
acts as an inverse 

smoothness hyper-parameter controlling for the trade-
off between smoothness and flexibility. That is a small 
value of 

  
! jk ,r

2

 
corresponds to an increase of the penalty 

or shrinkage (error) or vice-versa. 

Unknown nonparametric effects 
  
f jk ,r t( )  of 

continuous smooth covariate 
 xr

 were estimated using 
Bayesian P-splines [6] as a linear combination of a 
larger number of B-splines basic functions  Bd , i.e., 

  
f jk ,r xr( ) = ! jk ,rd

d"1

Dr

# Bd xr( ) . The basic functions  Bd  are the 

B-splines of a known degree  l  on a set of equally 
spaced knots 

  
xr max( ) = !0 < !1 < ! 2 < ...< ! s"1 < ! s = xr (max) within the 

main domain of 
 xr

, Dr = l + s . The Bayesian analogue 
is the second order random walk smoothness priors of 
the form: 

  
! jk ,rd = 2! jk ,r ,d"1 "! jk ,r ,d"2 +# jk ,rd ,d = 3,4,..., D           (7) 

with iid Gaussian errors 
  
! jk ,rd ~ N 0," jk ,!

2( )( )  where 

  
! jk ,"

2 =1 # 2 . The linear trend coefficients’ initial values 
of the random walk were assigned diffuse priors, 

  
P ! jk ,r1( )" const  and P ! jk ,r 2( )" const .  

The spatial effects were modelled separately to 
distinguish between the different effects on the 
outcome, that is, 

  
f jk ,spat t( ) si( ) = f jk ,str t( ) si( )+ f jk ,unstr t( ) si( ) . 

For the spatial correlated (structured) effects 

  
f

jk ,str
t( ) s( )( )  we assumed a GMRF [16] prior. In this 

case, we defined areas as neighbors if they share a 
common boundary and assume that the effect of an 
area 

  
s ! 1,2,3,...,S{ }  

is conditionally Gaussian. The 
spatial smoothness prior for the spatial function 
evaluation 

  
f jk ,str s( ) = !s

str

 
is given by:  

  
f jk ,str s( ) = !s

str =
1

Ns

! "s
"s #$s

% +us ,us ~ N 0,
& jk ,str

2

Ns

'

(
)
)

*

+
,
,         (8) 

where  !s "#s denotes that province  !s  is a neighbor of 
province  s . The conditional mean of  !s  is an 
unweighted average of function evaluations of 
neighboring provinces. The number of parameter  D  
equals the number of distinct areas  S  and the  n! S  
design matrix  Zstr  is a 0-1 incidence matrix. Its values 
on the ith row and sth column is a one if an observation 
is located in the province s and zero otherwise. The 
 S ! S  penalty matrix  Wstr  has the form of the adjacency 

matrix with 
  
rank Wstr( ) = S !1 . The dimension of the 

penalty matrix in GMRF equals to the number of 
different spatial regions (provinces in our case)  S ; 
hence, the computational burden is less compared to 
the stationary GRF priors approach. The unstructured 
spatial effects 

 
funstr s( )  were assumed to be iid 

Gaussian priors, 
  
funstr s( ) ~ N 0,! unstr

2( ) . In real situations, 

usually it is not known how much spatial variation is 
explained by both the structured and the unstructured 
effects; therefore, the interpretation of the spatial 
effects is based on the sum of these two effects. 

The variance parameter vector 

  
! jk ,q

2 = ! jk ,1
2 ,! jk ,2

2 ,...,! jk ,y
2( )" for q =1,2,..., y

 
contains 

variance parameters for the error term 
  
! jk ,"

2 , frailty term 

  
! jk ,b

2 , structured spatial terms 
  
! jk ,str

2 , the unstructured 

spatial terms 
  
! jk ,unstr

2  and the generic random effects 

(regression) coefficients 
  
! jk ,r

2 . Routinely, each of these 
variance hyperparameters is assigned a non-
informative inverse Gamma priors with known 
parameter values a=b= 0.001, that is, 

  
! jk ,q

2 ~ IG aq ,bq( )( )  

  

P ! jk ,q
2( )" 1

! jk ,q
2( )

aq+1
exp

bq

! jk ,q
2

#

$
%
%

&

'
(
(, for aq ,bq >0          (9) 

Additional information is given in the Appendix 7. 
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2.4. Posterior Distribution 

The fully Bayesian inference is based on the entire 
posterior distribution, and more detail is shown in 
Appendix 8: 

  
P ! ," ,# 2 / data( )$ L data / ! ," ,# 2( )P ! ," ,# 2( )       (10) 

The likelihood as defined in Section 2.2 and the joint 
prior made up of the individual prior distributions of the 
specified parameters yield the posterior distribution. 
Due to conditional independence assumptions, the joint 
prior factorizes into: 

  

P ! ," ,# 2( ) = P ! jk ,r / # jk ,q
2( )

r=0

m

$ P # jk ,q
2( )

%
&
'

('

)
*
'

+'
P "( ),

1

# jk ,q
2( )

aq+1
exp

bq

# jk ,q
2

-

.
/
/

0

1
2
23

4! jk ,rWjk ,r! jk ,r

2# jk ,q
2

-

.

/
/

0

1

2
2

q,r=0

m

$
%

&
'

('

)

*
'

+'

      (11) 

The component 
 
P !( )  

can be omitted since it 
represents fixed effects prior. The posterior distribution 

  
P ! ," ,# 2 / data( )  is then an approximation of the 

product of Equation (5) and (11).  

2.5. Markov Chain Monte Carlo Inference 

Since this posterior distribution is not in a closed 
form, we used the MCMC simulation method based on 
updating full conditionals of single parameters or blocks 
of parameters (for the same transition rate), given the 
rest of parameters and data. To update the parameter 
vector 

  
! jk ,r  which corresponds to the time-independent 

functions, spatial effects, fixed effects and random 
effects; we used the Metropolis-Hastings (MH) 
algorithm based on iteratively weighted least squares 
(IWLS) proposals for generalized linear mixed effects 
models (GLMM) [17] and adapted to generalized 
structure additive models (GSAM) [18]. Suppose we 
want to update 

  
! jk ,r  

with current value 
  
! jk ,r

c

 
of the 

chain, the new value 
  
! jk ,r

p

 
is proposed by drawing a 

random vector from the high-dimensional multivariate 
Gaussian proposal distribution 

  
q ! jk ,r

c ,! jk ,r
p( )  

which is 

attained from the quadratic approximation to the 
posterior by a second-order Taylor expansion with 
respect to 

  
! jk ,r

c

 
explicitly illustrated in Appendix 9. 

Other parameters corresponding to the time-varying 
log-baseline effects were estimated using a 
computationally faster MH-algorithm based on 
conditional prior proposals. Unlike the ILWS algorithm 
which requires derivatives, MH-algorithm requires the 
evaluation of the log-likelihood since the derivatives are 
computationally intensive for these parameters due to 

the additional integrals involved. As the full conditionals 
of the variance parameters are inverse Gamma 
distributions, updating the hyper-parameters was done 
using Gibbs sampling. 

2.6. Model Diagnostics and Sensitivity Analysis 

The convergence of the Markov chains to their 
stationary distributions was assessed by inspecting the 
sampling paths and autocorrelation functions of the 
sampled parameters. Trace plots and visual 
autocorrelation plots were used to evaluate the 
performance of the model. In running the MCMC 
algorithm, 10,000 iterations were made with a burn-in 
of 2,000 and a thinning parameter of 20. We also 
performed a sensitivity analysis to ensure that the 
choice of the priors did not have an influence on the 
obtained results. In the initial run, default Gamma priors 
with hyper-parameters 

 
! = " = 0.001( ) ) were used then 

two more trials using values of  ! = " = 0.0001  and 

 ! =1 with " = 0.001 . The results reported are those of 
the model with default prior values.  

3. APPLICATION OF THE MODEL  

3.1. The Zimbabwe National ART Programme Data 

The national ART programme was introduced in 
Zimbabwe in 2004 to provide treatment for PLWHIV 
and support the fight against HIV [19]. Patients’ data 
are routinely collected at ART initiation, and 
subsequent follow-up visits, through the electronic 
patient management system (ePMS) [20]. The ePMS 
was introduced to improve and increase efficiency in 
patient monitoring compare to the paper-based system 
and allows analysis at the national level of suitably 
anonymized patient data. 

At baseline, demographic and clinical information is 
captured including gender, age, and WHO clinical 
stage, while viral load and CD4 measurements are 
captured at baseline as well as in subsequent visits. 
WHO recommends the use of laboratory monitoring to 
manage HIV patients on ART, using viral load 
measurements at baseline (6 months after ART 
initiation) and then every six months to guide patient 
management. Practically, this patient-level information 
is taken intermittently over time; hence, missing data is 
common due to patients’ travels, patients’ social 
circumstances, patients’ treatment non-adherence or 
errors during data capturing. Missing data in program 
data may also be due to program guidelines and 
policies, the data used in this study covers the period 
when differential monitoring was done [21]. These 
aspects lead to missing and irregular compilation of 
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longitudinal data points which are likely to be missing 
not at random (MNAR). In this study, we considered 
primarily those individuals who had at least two 
subsequent viral load measurements. 

3.2. Study Design and Ethics 

This study was a secondary data analysis of a 
retrospective cohort of anonymous HIV positive 
patients initiated on ART between 2004 and 2017, and 
whom their routine data was captured through the 
ePMS system linked with the Zimbabwean Ministry of 
Health and Child Care (ZMOHCC). Permission to use 
the data was obtained from ZMOHCC, and ethical 
clearance was granted by the University of 
Witwatersrand’s Human Research Ethics Committee 
(Medical) (Clearance Certificate No. M170673).  

4. RESULTS 

4.1. Descriptive Analysis of the Baseline 
Characteristics 

Of the 18,150 participants with two or more viral 
load measurements following ART initiation: 64.3% 

(n=11,671) participants had detectable viral load 
(>50copies/mL) while 35.7% (n=6,479) had 
undetectable viral load (<50copies/mL). There was a 
significant difference between these baseline 
proportions of patients with undetectable viral load and 
those with detectable viral load, p-value<0.001. The 
mean (standard deviation) age and weight was 
39.1(10.2) years and 62.4(13.5) Kgs at ART initiation, 
respectively. Majority of the patients were females 
(67.1%), enrolled at the primary health care (PHC) 
facilities (68.2%) within rural areas (52.4%). Majority of 
the patients were on first-line regimen (95.0%) and 
53.3% in WHO clinical stage III/IV. Most of the patients 
did not move out of their initially occupied state, 
particularly the viral rebound state (68.74%). A total of 
496 patients (2.73%) had died at the end of the study 
(Table 1).  

4.1. Fully Bayesian Time-Varying Transition 
Intensities Pattern Results 

We fitted an unadjusted (no covariate) and 
covariate adjusted models to obtain the time-varying 
log-baseline hazard plots. The unadjusted model gave 

Table 1: Participants’ Baseline Characteristics (Sociodemographic and Clinical) and the Observed Transitions during 
the Follow-Up Period in the Zimbabwe National ART Programme, 2004-2017 

Variable Category Frequency Percentage 

Health facility type Primary Health Care 
District /Mission hospital 

Provincial/Referral hospital 

12 385 
4 527 
1 238 

68.24 
24.94 
6.82 

Degree or urbanization of health 
facilities 

Rural 
Urban 

9 700 
8 450 

53.44 
46.56 

Sex Female 
Male 

12 169 
5 981 

67.05 
32.95 

Regimen type First line 
D4T(30)+ 3TC+NVP 

AZT+3TC+NVP 
AZT+3TC+EFT 
TDF+3TC+NVP 
AZT+3TC+EFV 

Second line 

17 234 
9 

353 
38 
280 

16 554 
916 

94.95 
0.05 
1.94 
0.21 
1.54 
91.21 
5.05 

WHO clinical states I/II 
III/IV 

Missing 

7 700 
9 679 
771 

42.42 
53.33 
4.25 

Baseline viral load states Suppressed state (State 1) 
Unsuppressed state (State 2) 

6 401 
11 749 

35.27 
64.73 

Transitions between states 1 → 1 
1 → 2 
1 → 3 
2 → 1 
2 → 2 
2 → 3 

21 645 
2 803 
200 

2 804 
61 015 

296 

24.39 
3.16 
0.23 
3.16 
68.74 
0.33 
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wide credible intervals (CI) for both the viral rebound 
(undetectable (state 1) to detectable (state 2)) and viral 
suppression (detectable (state 2) to undetectable (state 
1)) transitions as shown in Figure 2 (top panel). 
Adjusting for the other covariates narrowed the time-
varying log-baseline CI. Therefore, we reported results 
based on the adjusted model Figure 2 (bottom panel). 
We observed an increase in the log-baseline hazard 
rates with time since ART initiation for both the viral 
suppression (state 2 to state 1) and viral rebound (state 
1 to state 2) transitions. The two time-varying log-
baseline mortality transition rates steadily increased 
with time.  

Comparing the viral suppression (state 2 to state 1) 
and viral rebound (state 1 to state 2) transitions on one 
plane, we observed that the log-baseline effects of 
attaining viral suppression (state 2 to state 1) were 
higher from ART initiation till the 7.2 year mark before 
going down thereafter (Figure 3a). The log-baseline 
hazard rates of mortality from either state showed a 
fluctuating pattern over time (Figure 3b). Among virally 
suppressed (state 1) patients, the risk of attaining viral 
suppression was higher in the early years of ART 
initiation compared to the risk of attaining viral rebound; 
however, after the 10 year mark, there was no 
difference between the two transitions (Figure 3c). 
Contrary, among the patients who attained viral 
rebound (state 2), the risk of regaining immune 
recovery was higher than that of death in overall 
(Figure 3d).  

Table 2 presents the results of the effects of the 
fixed covariates on each of the transitions. Although the 

effects of WHO clinical stage were not significant for 
the viral suppression (state 2 to state 1) transition and 
on the risk of death from any state; patients in WHO 
clinical stage III/IV had a higher risk of a viral rebound 
compared to those in WHO I/II (posterior hazard ratio 
(PHR) =1.26; 95%CI: 1.03-1.48). Compared to 
females, male patients were 64% times less likely to 
attain a viral rebound (PHR=0.36; 95%CI: 0.29-0.45); 
1.57 times (95%CI: 1.28-1.90) more likely to become 
virally suppressed and 1.68 times (95%CI: 1.32-2.05) 
more likely to die if they have a viral rebound. However, 
there was no significant difference in gender on the risk 
of death if an individual was virally suppressed. 

The effects of age on the risk of the four transitions 
are presented in Figure 4. The age effects on the risk 
of mortality and viral rebound for an individual with 
suppressed viral load was high if a patient was either 
an adolescents/young adult (below 30years) or older 
(above 60years) as shown by the bath-tub “! ” shaped 
splines; however, the effects for older patients were not 
significant due to fewer numbers of participants in this 
category. Contrarily, the age effects on the risk of viral 
suppression followed a doom “! ” shape. This means 
individuals aged 30-60 years with viral load rebound 
had a higher risk of experiencing the reverse transition 
and subsequently attaining viral suppression. Also, the 
age effects on the risk of mortality for an individual with 
viral rebound increased with an increase in age until 30 
years before remaining constant thereafter.  

The smooth geographical effects are shown in 
Figure 5 with their corresponding 95%CI for each 
transition based on Zimbabwe provinces as the spatial 

 
Figure 2: Estimated time-varying log-baseline transitions (middle line) and their 95% and 80% credible intervals from the fully 
Bayesian inference estimation of univariate analysis/no covariates (top panel) and multiple covariate model with non-linear, 
fixed and spatial covariates (bottom panel). 
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Figure 3: Comparison of the estimated time-varying log-baseline transitions from the fully adjusted Bayesian multistate model. 

 

Table 2: Fixed Effect Covariates Results for the Estimated Transition Intensities Coefficients and Ratios in the 
Zimbabwe National ART Programme Based on Viral Load Measurements, 2004 to 2017 

Covariates 
Transitions 

 WHO III/IV 
(Reference: WHO I/II) 

Mean(95% Credible Intervals) 

Sex 
(Reference: Female) 

Mean(95% Credible Intervals) 

Coefficients  0.23 (0.03 to 0.39)* -1.02 (-1.24 to -0.79)* Viral rebound 
(state 1 to 2)  Exponents 1.26 (1.03 to 1.48)* 0.36 (0.29 to 0.45)* 

Coefficients  -0.12 (-0.29 to 0.04) 0.45 (0.25 to 0.64)* Viral suppression 
(state 2 to 1)  Exponents 0.89 (0.75-1.04) 1.57 (1.28-1.90)* 

Coefficients  0.19 (-0.11 to 0.51) -0.17 (-0.49 to 0.11) Viral suppression mortality (state 1 
to 3)  

Exponents 1.21 (0.90-1.67) 0.84 (0.61-1.12) 

Coefficients  -0.43 (-0.53 to 0.17) 0.52 (0.28 to 0.76)* Viral rebound mortality (state 2 to 3) 

Exponents 0.65 (0.59-1.19) 1.68 (1.32-2.05)* 

*Significant at 5%. 

unit. The yellow colour represents regions with non-
significant spatial effects for all the transitions. For the 
risk of viral rebound and the risk of mortalities from 
either state, the red colour indicates an increased 
spatial effect while green colour indicates a decreased 
spatial effect. The region which borders with Botswana 
and Zambia (Matabeleland North province) had a 
significant highest likelihood of viral rebound (state 1 to 

state 2) transition compared to other regions. For the 
risk of viral suppression, the red colour indicates 
decreased spatial effects while green colour indicates 
increased spatial effects. The southern region which 
borders with Botswana, the middle region in the central 
parts of the country and northern regions bordering 
Zambia and Mozambique had a low likelihood of the 
viral suppression (state 2 to state 1) transition. This 
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Figure 4: Estimated nonparametric effects of the continuous covariate (age) (middle line) and their 95% and 80% credible 
intervals from the fully Bayesian inference for the four transitions. 

 

 
Figure 5: Smooth spatial effects posterior means of provinces in Zimbabwe (top panel) and their corresponding 95% credible 
intervals (bottom panel) from the fully Bayesian inference [1-Bulawayo, 2-Harare, 3-Manicaland, 4-Mashonaland Central, 5-
Mashonaland East, 6-Mashonaland West, 7-Masvingo, 8-Matabeleland North, 9-Matabeleland South, 10-Midland]. 

means that patients in these regions were less likely to 
attain undetectable viral suppression compared to 
other regions.  

5. DISCUSSION  

The aim of this study was to determine the spatial 
heterogeneity of viral suppression and viral rebound 
trajectories from a subset of the Zimbabwe national 

ART programme data using a Bayesian geoadditive 
multistate model. To our knowledge, this is the first 
application of spatial effects within the multistate 
models' framework since none of the models in the 
original design has included the spatial random effects. 
Use of Bayesian multistate models in HIV studies is 
also scarce in the literature compared to the maximum 
likelihood multistate models; however, these Bayesian 
models are equally robust despite being 
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computationally intensive. Bayesian models give more 
comprehensive information through the use of priors 
which results in much more precise estimates as 
compared to the frequentist models [7]. Moreover, the 
spatial modelling has not been fully utilized in HIV 
monitoring to guide policy, particularly in resource 
constrained areas. We observed variations on viral 
suppression and viral bound transition patterns by 
geographical region, age, gender and WHO status in 
this cohort.  

5.1. Epidemiological Discussion 

The study findings showed that the log-baseline 
hazard rates for the viral load suppression to 
undetectable levels (state 2 to state 1) transition were 
as expected. The longer the patient was on ART, the 
more likely that patient was to attain viral suppression 
to undetectable levels. This is a good indication of how 
ART helps one to regress to a better state with time by 
improving viral suppression. This finding affirms the 
primary objective of ART which is to sustain viral 
suppression, decrease HIV transmission and improve 
survival outcomes of the individuals through immune 
function reconstitution [22]. Moreover, attaining a viral 
suppression is crucial for PLWHIV so that their life 
expectancy can be comparable to HIV-uninfected 
population [22]. The study results also assert that 
patients who are initiated on ART with advanced illness 
tend to adhere to their medication anticipating to 
recover and prolong their lives together with their 
families [23]. Surprisingly, male patients were more 
likely to attain viral suppression compared to female 
patients; however, male patients with high viral load 
measurements were more likely to die than recover. 
The higher risk of mortality among males can be 
explained by their association with poor immunological 
response to treatment resulting in death [24]. Male 
patients also have poor health-seeking behaviour 
compared to females which may result in late HIV 
diagnosis and delayed ART initiation [25]. To achieve 
and sustain viral suppression, interventions which 
minimize mortality, target high-risk behaviour changes 
and increase the gravity of ART adherence are crucial 
for males. For instance, rapid roll-out and promotion of 
self-testing campaigns [26] may be considered for 
people who do not usually seek voluntary HIV testing in 
health facilities to promote community-based testing 
among male subpopulation [27, 28]. The 30-60 years 
aged patients showed a higher effect of attaining viral 
suppression in this study, while adolescents and young 
adult subpopulations showed lower effects. This finding 
aligns with previous studies indicating that adolescents 

and young adult subpopulations experience suboptimal 
clinical outcomes and face different challenges which 
may result in treatment non-adherence [22]. The 
adolescence group is also known to be vulnerable as 
they are in the dynamic life transition of becoming 
independent [29]. Young adults group may not fully 
understand the gravity of ART adherence; hence, 
health care and social service providers should 
compassionately offer continual counselling support to 
improve young adults’ retention. 

The log-baseline hazard rates for the viral rebound 
transition also increased with increase in time. In the 
presents of potent and effective ART treatment, it 
would be logical to expect a decrease in the viral 
rebound (state 1 to state 2) transition rates over time; 
however, this was not the case in this study. The 
results assert that sustaining viral suppression is still a 
challenge in HIV treatment. This finding can be 
explained by the fact that once individuals attain viral 
suppression, they may think that they are fully healthy 
again and no longer see the importance of continual 
treatment intake. This results in treatment interruptions 
which can trigger treatment defaulting, non-adherence, 
failure or resistance [30, 31]. Other studies have shown 
that majority of patients who attain a viral rebound with 
low CD4 cell counts are more likely to experience poor 
ART outcomes like HIV disease progression, loss to 
follow-up and mortality resulting in poor patient 
retention in HIV care [3, 22]. 

Interestingly, this study observed that adolescence 
and young adults aged below 30 years were found to 
have a higher risk of viral rebound. This finding 
supports previous studies that have shown that 
adolescents and young adults are less likely to achieve 
and sustain viral suppression [32]; hence, their risk of 
mortality is higher than older patients [3]. This finding 
can be explained by the fact that the below 30 years 
age group faces different life encounters which may 
lead to treatment non-adherence putting them at risk of 
unsustained viral load suppression and consequently 
viral rebound [22]. We also observed that older patients 
aged 60 years and above had a high risk of attaining 
viral rebound in this cohort. This can be explained by 
the fact that this group is associated with non-
communicable comorbidities like hypertension diabetes 
and cancers in addition to communicable illnesses like 
tuberculosis associated with HIV infection [33]. These 
comorbidities result in multiple drug toxicity which may 
trigger non-adherence and subsequently viral rebound. 
Therefore, pharmacological services should aim to 
continue providing potent and effective ART regimens 
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with minimum side-effects and less prone to resistance 
to achieve treatment adherence and viral suppression. 
Not only can viral rebound results in death outcomes 
but also in an upsurge in vulnerability to opportunistic 
infections since the immune system becomes weaker; 
and this is supported by the observed high risk of viral 
rebound among patients with advanced WHO clinical 
stages in this study.  

The smooth spatial effects show that patients from 
the Matabeleland North province had a higher risk of 
viral rebound. This finding could be supported by the 
fact that this region has a lot of movement of residents 
to Botswana and Zambia seeking jobs or informal 
trading which may attribute to poor retention and 
subsequently poor treatment adherence. Moreover, 
due to tourism activities which attract diverse people 
and the existence of the long truck route connecting 
into neighbouring countries, this region has a high risk 
of multiple sex partners [34] and is prone to sex for 
money activities [35] which may contribute to acquiring 
new HIV strains. This becomes a threat to viral 
suppression and promotes viral rebound through ART 
resistance or failure resulting in the need of a different 
HIV regimen. Besides, the viral rebound spatial 
patterns depicted in this region could be due to non-
adherence to treatment yielding from poor provider-
patient relationships; therefore, professional training of 
service providers on the proper code of conduct 
towards HIV patients is critical. Another reason could 
be the short treatment dispensary period of 3 months, 
especially for informal traders to neighbouring 
countries; hence, revising these guidelines to 6 months 
can be an option. Also, rural residents in this region 
may face transport challenges due to the poor road 
networks and terrain. Interventions like ART adherence 
clubs functional mobile clinics, community-based 
dispensing points or other optional ART distribution 
strategies for these communities may be of benefit 
[36,37]. The smooth spatial effects for viral suppression 
show that patients from the intra-regions stretching 
from the Botswana border to Zambia/Mozambique 
border were less likely to attain viral suppression. This 
finding could be explained by late presentation leading 
to delayed ART initiation [38,39]; hence, immune 
recovery becomes slow in most instances. 
Interventions which were found to be effective include 
strengthening and intensifying index testing, lay testing 
and community mobilization for testing-HIV musical 
galas campaigns in addition to self-testing campaigns 
[27, 28].  

5.2. Statistical Discussion 

Our modelling approach incorporated the spatial 
random effects in the flexible predictor of the multistate 
model. This controlled for unobserved heterogeneity in 
addition to individual random effects which frequentist 
models cannot handle [40]. Such modelling 
approaches in epidemiological studies are of 
importance to get unbiased estimates as they reflect 
reality. This convolution modelling approach of the 
spatial component was preferred since it fully accounts 
for the spatial correlation and address essential public 
health aspects that are beyond the scope of a simple 
pictorial analysis [41]. Moreover, time-varying transition 
intensities were considered to account for the dynamic 
natural events. 

Our findings should be interpreted cautiously; 
participants used in this study were conveniently 
sampled from the Zimbabwe national ART program 
ePMS database on the basis of having two consecutive 
viral load measurements leading to participant 
selection bias. This small sample might not be a true 
representation of all ART patients in Zimbabwe over 
this period in time and may negatively impact on the 
generalizability and inference of the observed results. 
This means the data should be viewed as a non-
random representation from all those who are on ART 
in Zimbabwe. Relatively few death outcomes were 
observed in this study which could be due to under-
reporting of the deaths in the ePMS database; hence, it 
is likely that the mortality transitions were 
underestimated in this study. Moreover, the model 
used assumed right censoring of observations since it 
cannot support interval censoring. However, going 
forward the statistical analysis approach used provides 
useful information to epidemiologist, patients and 
policymakers on the spatial variations of viral load 
transitions for HIV/AIDS disease progression and 
death.  

This study acknowledges how ART policies have 
been changing over the years. ART regimen 
prescription has changed from multiple-tablets daily 
regimen to single-tablet once daily regimens. The 
impact of the single-tablet once daily regimens 
prescription has resulted in improved adherence, 
improved patient satisfaction and improved virological 
response [42,43]; however, this study could not adjust 
for these time-varying covariates since they were not 
available in the analysed data. Also, there have been 
changes in ART monitoring policy moving from WHO 
clinical monitoring to CD4 cell counts monitoring and 
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now the use of viral load monitoring. The overall policy 
impact of using viral load monitoring has resulted in a 
faster switch of ART regimen when treatment failure is 
indicated from first-line to second-line therapy [44]. This 
subsequently leads to patients attaining viral 
suppression and reduced HIV transmission; however, 
most developing countries still have centralized 
laboratories which can be logistically challenging to 
meet WHO recommendations to measure viral load at 
baseline and after every 6 months [44, 45]. Over the 
years, most resource-limited settings including 
Zimbabwe have been doing differential monitoring 
targeting those patients with clinical signs which require 
viral load assessment as recommended by the 
clinician. This means, after achieving viral suppression, 
most of these patients did not have another viral load 
measurement taken until they had clinical signs which 
justify a viral load measurement to be taken. This 
differential monitoring approach may give biased 
inferences through participants’ selection bias since we 
are likely to have considered predominantly those 
patients with conditional viral load measurements 
based on the physician discretion. However, since 
2016, there have been significant strides towards viral 
loads measurements monitoring are per WHO 
recommendations for HIV monitoring in Zimbabwe [46]. 

We also did not consider ART adherence in this 
study which is an important predictor of viral 
suppression and viral rebound since it was not 
measured in the data; therefore, future research should 
consider these influential variables. Additionally, the 
difference between the spatial regions in viral 
suppression or viral rebound patterns may be due to 
the small sample sizes of participants in these regions 
which might not completely represent the regional 
picture had the estimates been weighted or sample 
size increased. However, our results for the spatial viral 
rebound transitions align with the national surveys in 
that, the region we found to have the highest likelihood 
of viral rebound was ranked the second-highest HIV 
prevalence region in ZIMPHIA 2015/16 national survey 
[46]. This affirms that regions with high viral rebound 
are susceptible to high risk of viral transmission leading 
to high HIV infections in the general population. 
Moreover, the differences in health facilities which offer 
ART services in Zimbabwe could have influenced the 
observed results in that, regions with fewer dispersed 
health facilities are associated with poor HIV disease 
progression outcomes since access to treatment is not 
as easy as those regions with multiple health facilities. 
Besides, health facilities in urban or cities usually 

perform better in terms of ART patients support and 
service provision compared to rural health facilities. 
However, despite these limitations, important 
information regarding viral suppression and viral 
rebound transitions and the associated spatial 
heterogeneity patterns were determined; and the 
subpopulation groups of people with a high risk of 
suboptimal viral rebound and mortality were also 
identified using the Bayesian geoadditive multistate 
model. 

6. CONCLUSION 

This study demonstrated the first inclusion of spatial 
random effects in Bayesian multistate models’ 
framework implemented in the C++ BayesX free 
software and we observed that the viral suppression 
transitions were not static. The inclusion of spatial 
effects in multistate models is of profound relevance in 
resource-limited settings in the evolving modelling 
techniques. Structured maps are useful for 
policymakers to visually identify high-risk regions and 
interventions on those areas unveiling eminent 
outcome risk [47]. Further studies need to consider the 
effects of CD4 cell counts on the viral load suppression 
and rebound transitions to get improved outcomes from 
a Bayesian perspective [4]; adjust for the effects of 
time-varying covariates like regimen change on the 
viral suppression and viral rebound transition; consider 
regional donor funds or HIV interventions to get much 
more informative findings. Also, the viral suppression 
and viral rebound spatial correlation can be extended 
to district levels spatial units or different subpopulation 
groups to precisely guide targeted intervention to 
specific subpopulation groups.  

Suboptimal adherence and poor retention in care 
increase the risk of viral rebound, particularly among 
adolescents and young adult subpopulation. Holistic 
intervention approaches which may be considered 
include self-monitoring, peer support, patient follow-
ups, treatment refill mobile phone reminders, and 
patient and caregiver educational support. Health 
literacy and belief are significant barriers to ART 
adherence; hence, interventions which include 
education sessions on ART addressing the negative 
effects of beliefs in divine healing, the inclination for 
traditional medicine and misconceptions over ART 
benefits and safety are crucial to achieve and sustain 
viral suppression. Moreover, models which expedite 
treatment uptake for the newly diagnosed patients 
coupled with tailored approached for adolescents, 
young adults and male subpopulations should be 
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developed to promote early diagnostics and ART 
uptake, reduce barriers to care and subsequently to 
achieve optimal health of these subpopulations. Most 
promising interventions which improve ART adherence 
and patient retention in care through minimizing 
"leakages" in the HIV continuum of care cascade are 
essential for all patients in care and should be the 
focus of HIV treatment and prevention in the pursuit of 
the UNAIDS 90-90-90 fast track targets. 
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