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Abstract: Bayesian flexible multilevel nonlinear models (FMNLMs) are powerful tools to analyze
infectious disease data with asymmetric and unbalanced structures, such as varying epidemic stages
across countries. However, the robustness of these models can be undermined by poorly designed
estimation methods, particularly due to uncertainties in prior distributions and initial values. This study
investigates how varying levels of prior informativeness can influence the model convergence, parameter
estimation, and computation time in a Bayesian flexible multilevel nonlinear model (FMNLM). A
simulation study was conducted to evaluate the impact of modifying prior assumptions on posterior
estimates and their subsequent effects on the interpretations. The framework was applied to COVID-19
data from Francophone West Africa. The results indicate that accurate, informative priors enhance the
prediction performance with minimal impact on the computation time. Conversely, non-informative
or inaccurate priors for nonlinear parameters led to lower convergence rates and a reduced recovery
accuracy, although they may remain viable in standard multilevel nonlinear models.
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1. Introduction

Multilevel nonlinear models, also known as nonlinear mixed-effects models (NLMMs), offer a
sophisticated approach to data analysis by accounting for both within- and between-subject variability.
These models are particularly well-suited to leverage the richness of repeated measurements. Over the
past few decades, there has been growing interest in applying NLMMs to infectious disease modeling to
gain a more comprehensive understanding of disease dynamics and to improve control strategies. This
interest is particularly driven by the need to account for substantial heterogeneity across countries when
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conducting in-depth analyses of micro-infection dynamics.
Estimation methods may lack robustness if not carefully designed. To enhance the application of these

models in infectious disease analyses, Bayesian methods have been proposed as a valuable framework
to incorporate a priori information more rigorously. This approach flexibly addresses sparse and
unbalanced longitudinal data from individual subjects [1]. However, a common concern with Bayesian
methods is their sensitivity to various aspects of the modeling process, including prior distributions and
initial values [2]. A sensitivity analysis serves as a fundamental tool to investigate the model uncertainty.
Prior distributions play a critical role in determining the extent to which subjective opinions influence
the model estimation. As [3] noted, the effect of a prior distribution depends on factors such as its degree
of informativeness and the sample size. This study builds on recent developments in Bayesian flexible
multilevel nonlinear models (FMNLMs) for infectious disease analyses [3, 4]. Specifically, it examines
how prior informativeness and accuracy, along with the sample or cluster size, affect the parameter
estimates in FMNLMs. The focus is on understanding whether strong but inaccurate subjective beliefs
about epidemic parameters can significantly impact estimation outcomes.

The literature on the specific impact of different prior distributions in infectious disease modeling
remains limited. This investigation aims to provide insights into the consequences of using informative
prior distributions in this specific context. We focus on two flexible models, namely the scale mixtures
of skew-normal nonlinear mixed model (SMSN-NLMM) and the semi-nonparametric nonlinear mixed
model (SNP-NLMM), to examine how varying levels of prior informativeness can influence the model
convergence, parameter estimation, and computation time through a simulation study. Starting from
completely diffuse prior distributions, we introduce reasonable modifications to the prior assumptions,
recompute the posterior quantities of interest, and assess whether these changes significantly affect the
interpretations or conclusions.

In this framework, we assume that the random terms (random effects and residuals) follow either a
scale mixtures of skew-normal (SMSN) distribution [5–7] or a semi-nonparametric (SNP) distribution
[8, 9]. Using specific epidemic data characteristics, such as sample size, cluster size, or reporting
frequency, we evaluate the empirical performance of these models in recovering the epidemic parameters
under varying levels of prior informativeness.

This paper is structured as follows: in Section 2, we introduce a case study of infectious disease
dynamic models and describe the real dataset used in this analysis; Section 3 provides a concise
summary of the multivariate flexible multilevel nonlinear models (SMSN-NLMM and SNP-NLMM)
and their associated Bayesian estimation procedures; Section 4 presents a simulation study to evaluate
the methodology; in Section 5, we apply the proposed methodology to the COVID-19 dataset described
in Section 2, thus showcasing its utility and presenting the results; and finally, Section 6 presents a
discussion of the findings and their implications before a short summary of the key findings in the
conclusion.

2. The data and infectious disease dynamic models: A case study of the COVID-19 pandemic in
Francophone West Africa

Infectious disease outbreak data, such as reported cases and deaths, are collected within countries or
regions. Countries that experience outbreaks earlier tend to accumulate more data compared to those
in the same region that experience outbreaks later. To prepare for potential outbreaks, countries that
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have not yet reached the peak often leverage existing data from neighboring countries to model the
average patterns and predict the trajectory of the epidemic. Additionally, the level of surveillance and
preparedness against outbreaks varies across countries, thus leading to a diverse range of responses that
can influence the epidemiological parameters. Sub-notification is a significant challenge in accurately
understanding the true number of infections in the population due to the varying testing capacities
between countries.

Figure 1 presents example cases, showing the reported number of daily COVID-19 cases across
different countries. It displays daily reported cases from the first identified cases until October 1, 2020,
in seven West African countries (Benin, Burkina Faso, Ivory Coast, Guinea, Mali, Niger, and Senegal).
These countries were selected for comparison and discussion, as previously chosen by [10] to examine
the epidemic dynamics in the region. The authors emphasized that these countries demonstrate the
varying dynamics of the pandemic, despite implementing different government measures within the
same geographical area.

The datasets can be accessed via the link https://github.com/CSSEGISandData/COVID-19/ provided
by Johns Hopkins University in collaboration with the Center for Systems Science and Engineering
(see [11]).

Figure 1. Number of daily reported cases since first cases to 01/10/2020 for seven Francophone
West African countries.

It is worth noting that, in contrast to countries in regions such as America or Europe, where cases
have been reported daily since the first identified case, the Francophone West African countries presented
here experienced several consecutive days with zero detected cases, despite being at different stages
of the pandemic curve. The different stages of disease spread are crucial information that should be
incorporated into the model. Moreover, infectious disease data often exhibit skewness, outliers, or
heavy-tailed behavior [2, 12, 13]. For instance, Figure 2a shows the density curve of residuals from
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reported cases, thus revealing significant skewness in the reported responses. It is important to note that
these reported responses have been subjected to linear transformations, as proposed in [13], yi j = zi j/kz,
where zi j is the number of reported cases at the ith country and the jth day since the first reported
case, and kz is chosen to be the sample standard deviation from the country data, which is the smaller
one in the observed data. Non-normality is also confirmed by the Q-Q plot of the fitted residuals in
Figure 2b. To characterize skewness with heavy tails, which often appear in such epidemic data, we
will develop a Bayesian flexible parametric (SMSN-NLMM) or semi-nonparametric (SNP-NLMM)
multilevel nonlinear models in conjunction with Model 3.1 under the assumption of SMSN and SNP
distributions. That is, we assume that both εi and bi either follow a multivariate SMSN distribution
as proposed by [5, 6, 13] and [7] or a SNP as introduced by [8] and [9]. These methodologies jointly
accommodate the different stages of the diseases while borrowing information from the different time
series and considering the epidemic data structure to provide a more robust and reliable fit and prediction.

Figure 2. The density curve and Q-Q plot of COVID-19 reported number residuals for the
seven West-African countries: (a) Density curve; (b) Q-Q plot.

3. Model formulation and Bayesian approach

3.1. Nonlinear mixed-effect models (NLMMs)

NLMMs can be applied across various fields beyond infectious disease modeling. In this section, we
focus on their application to infectious disease data. Specifically, we treat subjects as either countries or
regions within a country.

Let us consider n independent countries (or regions of a country), each with mi measurements from
the ith country (or region of a country). Let yi j denote the observed response and xi j represent the vector
of within-subject covariates for the jth measurements ( j = 1, ...,mi) from the ith country (i = 1, ..., n).
The response vector for the ith country is denoted as yi = (yi1, ..., yimi)

⊤. Next, let us define a scalar-valued
differentiable nonlinear function µ(xi j|ϕi) that describes the average trajectory of the response. The
general nonlinear mixed-effects model is expressed as follows [14] :

yi = µ(ϕi, xi) + εi, (3.1)

where εi is a ni−dimensional vector of independent within-country errors. The mixed effects parameter
vector ϕi is modeled as follows [14] :
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ϕi = Aiβ + Bibi. (3.2)

In Eq (3.2), Ai is a design matrix of size (r,p) for the fixed effects that possibly depends on elements
of xi, and Bi is a design matrix of size (r,q) for the random effects that allow the incorporation, for
instance, of “time-varying” covariates in the random effects with r, which represents the number of
subject-specific parameters included in the nonlinear function. β is a p-dimensional locator vector
of fixed-effects. bi is a q-dimensional vector of random-effects (assumed to be mutually independent
across subjects and independent of the within-country errors εi) associated with the ith country.

The random-effects vector bi has the density function gb(.|θ) and the conditional distribution of yi

given bi, and the covariate vector xi j has the density function fY(.|bi, θ). The estimation of the parameter
vector θ (which contains β and distribution parameters) of NLMMs is commonly achieved through
maximization of the marginal likelihood L(.|y) of the observed data Y = (y⊤1 , ..., y

⊤
n )⊤ as follows:

L(θ|Y) =
n∏

i=1

∫
fy(yi|bi, θ)gb(bi|θ)dbi. (3.3)

Both gb(.|θ) and fY(.|bi, θ) are often assumed to be multivariate normal densities; however, the observed
data may not support these assumptions.

3.2. Scale mixture of skew-normal nonlinear mixed-effects model (SMSN-NLMM) specification

The parametric flexible multilevel nonlinear model is the nonlinear mixed effects model in which the
random terms (random effects and errors) follow a scale mixture of skew-normal (SMSN) distributions.
It’s expressed as follows: yi = µi(ϕi) + ϵi; ϕi = Aiβ + Bibi with

ϵi j ∼ SMSN1(−η, ω2, λ, ν); bi ∼ SMSNq(−ηb,Ωb, λb, νb), (3.4)

where η and ηb are location shifts used to zero means of residual errors and random effects, respectively,
ω2 andΩb are the scale parameters that know the degrees of freedom (ν and νb) and the shape parameters
(λ and λb) to effectively capture skewness and heavy-tailed behavior. Meanwhile, under a mixed effects
design with n subjects and mi measurements for the ith subject, the SMSN-NLMM is given for the jth

outcome Yi j (i = 1, · · · , n; j = 1, · · · ,mi) as follows:(
Yi j | xi j,ϕi

) ind
∼ S MS N1(ξi j, ω

2, λ, ν), bi
ind
∼ S MS Nq(ξb,Ωb, λb, νb), (3.5)

with E
(
Yi j | xi j,ϕi

)
= µ(xi j | ϕi) = µi j; Var

(
Yi j | ϕi

)
= σ2; E(bi) = 0; Var(bi) = Σb. Let κ be the

mixture variable associated to response yi j with the cumulative distribution function Hκ(ν) and the
density function hκ(ν) and U, the mixture variable associated to random effect vector bi with cumulative
distribution function Hu(νb), and the density function hu(νb), whereas κet = E{κ−t/2} < ∞ (t = 1, 2)
and Ut = E{U−t/2} < ∞ (t = 1, 2). Then, the expectation of the response, and the residual variance,
and the variance-covariance matrix of random effects are expressed as follows [7]: ξi j = µi j − cκe1δe;
ω2 = κ−1

e2 (σ2 + c2κ2
e1δ

2
e); ξb = −cU1δb and Ωb = U−1

2 (Σb + c2U2
1δbδb⊤) with c =

√
2/π.
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A key feature of SMSN-NLMM is that it can be formulated within a flexible hierarchical representa-
tion that is useful to easily write implementable STAN or BUGS codes and for analytical derivations.
While referring to [15] and [16], it follows from (3.4) that(

Yi j | ϕi, κi j, ti j

) ind
∼ N1

(
µi j +

(
ti jκ
−1/2
i j − cκe1

)
δe, κ

−1
i j ω̄

2
)
, (3.6a)

κi j
ind
∼ Hκ(ν) and ti j

ind
∼ HN(0, 1), (3.6b)

(bi | Ui, si)
ind
∼ Nq

((
siu
−1/2
i − cU1

)
δb, u−1

i Ω̄b

)
, (3.6c)

Ui
ind
∼ Hu(νb) and si

ind
∼ HN(0, 1), (3.6d)

where δe = ωλ(1 + λ2)−1/2, δb = (1 + λ⊤b λb)−1/2Ω
1/2
b λb, ω̄2 = ω2 − δ2

e , Ω̄b = Ωb − δbδ
⊤
b . t and s are

positive standard half normal random variables (absolute value of a standard normal random variables)
denoted HN(0, 1).

For instance, candidate shape parameters are δe and δb. Meanwhile, the parameters to be estimated
are the fixed effects β⊤, the shape parameters δe and δb, the degrees of freedom ν and νb, and the
variance components σ2 and Σb. The parameters ν and νb of the mixture variables control the shape of
the SMSN distributions with δe and δb, especially the skewness and the excess of kurtosis. Taking Y as
the complete data (observed data with a missing data), the complete likelihood function associated with
Y under the hierarchical representation can be expressed using Bayes Theorem as follows:

L(θ|Y) =
n∏

i=1

{{

ni∏
j=1

f (yi j|bi, κi j, ti j, ui, si)} fb(bi|ui, si)
ni∏
j=1

( fκi(κi j) fti(ti j)) fUi(ui) fsi(si)} (3.7)

where the notation fx(x) refers to the density function of x. θ = (β⊤, σ2, ϱ⊤, ρ⊤, δe, δb, ν, νb)⊤ takes
ϱ⊤, ρ⊤ as a random effects dispersion parameters matrix (Σb is supposed to be unstructured) diagonal
elements and off diagonal elements, respectively. κi = (κi1, ..., κimi)

⊤ and Ti = (ti1, ..., timi)
⊤.

3.3. Semi non-parametric nonlinear mixed-effects model (SNP-NLMM) specification

SNP-NLMM is the nonlinear mixed effects model in which the random terms (random effects and
errors) follow SNP distributions. The SNP-NLMM is expressed as follows: yi = µi(ϕi) + ϵi; ϕi =

Aiβ + Bibi with
ϵi j ∼ S NP(−η,R2, ψ,K) ; bi ∼ S NPq(−ηb, RbR⊤b ,ψb,K), (3.8)

where the subscript i represents the subject index, η and ηb are the location shifts used to zero means
of error and random effects, respectively, a shape vector ψ ∈ [−π/2, π/2], and a scale matrix Σ > 0
(positive definite) with Cholesky factor R (RRT = Σ) and integer valued expansion order K. Here,
we assume that the residual and the random effects are mutually independent across i, and write the
following:

yi j = µi j + R(Zi j − η), (3.9)
bi = Rb(Zbi − ηb), (3.10)

where R is the residual dispersion parameter, Rb is a (q × q) upper triangular scale matrix for random
effects, and Zi j ∼ S S NP(ψ,K) and Zbi ∼ SSNPq(ψb,K) are standard SNP variables.

S S NPq(ψ,K) defined in the sequel denotes a standard SNP variable with a null location vector and
the identity scale (S NPq(0; Iq; λ; K)). A standard S S NPq(ψ,K) variable z has a density of the following
form:

h(z|ψ,K) = P2
K(z|ψ)ϕq(z), (3.11)
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where PK(.|ψ) is a multivariate polynomial of order K. Let α be a multi-index, i.e., a q × 1 vector with
nonnegative integer elements: α = (α1, ..., αq)⊤. Let |α| =

∑q
k=1 αk and zα =

∏q
k=1 zαk

k . Then, the K order
multivariate polynomial can be written as follows:

PK(z|λ) =
K∑
|α|=0

aαzα. (3.12)

Therefore, the densities of response and random effects can be expressed as follows:

fY(yi j|bi, ψ,R) = P2
K(zi j;ψ)ϕ1(yi j|η,R2), (3.13)

fb(bi|ψb, Rb) = P2
K(Zbi;ψb)ϕq(bi|ηb, RbR⊤b ), (3.14)

where zi j = R−1(yi j − µi j) + η, and zbi = R−1
b bi + ηb; ϕq(.|γb,Σb) is q-variate normal density with

mean γb and covariance matrix RbR⊤b knowing Σb = RbR⊤b . Thus, following [17], E(Yi j) = µi j +

η − σE(Zi j); var(Yi j) = σ2var(Zi j); E(bi) = ηb + Σ
1/2
b E(Zi) and var(bi) = Σbvar(Zi), where E(Zi j) =

E(UP2
K(U;ψ)) and var(Zi j) = E(U2P2

K(U;ψ)) − E2(Zi j) and U ∼ N(0, 1). The marginal likelihood for
θ = (β⊤,R, Rb,ψ,ψb)⊤ for a fixed K is as folows:

L(θ|Y) =
n∏

i=1

{{

ni∏
j=1

fY(yi j|bi, ψ,R)} fb(bi|ψb, Rb)}, (3.15)

where b = (b⊤1 , . . . , b
⊤
m)⊤, y = (y⊤1 , ..., y

⊤
m)⊤, and yi = (yi1, ..., yimi)

⊤, i = 1, ..., n. Moreover, the SNP-
NLMM exploits the SNP approach to represent the density, where the degree of flexibility is controlled
by the parameter K, which is chosen via inspection of the standard information criteria. Thus, the
distribution density is parameterized in terms of a finite set of parameters θ, where the dimension
of θ (through ψ and ψb) depends on K. When K = 0, the semi-nonparametric density reduces to a
standard q-variate normal density, (3.13 and 3.14) are Nni(η,R2) and Nq(ηb,RbR⊤b ) with η = µi j and
R2 = σ2, so that the usual normal specification for NLMMs is a special case [9]. The approach is widely
recommended for routine use in situations where a departure from the usual normal assumption for the
random terms is either present or suspected. Often, K = 1 or 2 is sufficient to represent an adequate
departure from normality [17]. Most studies considered the performance for varying the expansion order
parameter K and confirmed this underlined proposition [8, 9, 18, 19]. A larger K gives more flexibility
to represent the random terms distribution; however, choosing a K that is too large will result in an
inefficient representation [17]. For facilitation and comparison purposes in this study, we just considered
the SNP-NLMM with K = 1.

3.4. Bayesian proposition

To complete the Bayesian specification, we need to consider prior distributions for all the unknown
model parameters, (β⊤, σ2, τ⊤, ρ⊤, δe, δ

⊤
b , ν, νb, ψ,ψb)⊤.

In this study, a Bayesian approach is adopted, thereby considering different levels of informative
priors by fixing the mean hyperparameter for the prior distribution to represent relatively close, moderate,
or distant values from the corresponding population value of the model parameters. These variations
are specifically applied to the model’s mixed effects parameters, particularly the fixed effects, while all
other parameters (such as precision, scale, and structural model parameters) are completely assigned
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to diffuse priors, as described by [20]. Therefore, the primary factors manipulated in this study are
the mean hyperparameter and the variance hyperparameter for each nonlinear parameter. A detailed
description of these factors is provided below.

In Bayesian modeling, the elements of the parameter vector θ are assumed to be independent.
Consequently, the joint prior distribution (π(θ)) for all unknown parameter densities can be expressed
for the SMSN-NLMM and SNP-NLMM models, respectively, as follows:

π(θ) = π(β)π(σ2)π(Σ)π(δ0)π(δ0b)π(ν)π(νb), (3.16)

π(θ) = π(β)π(σ2)π(Σ)π(ψ)π(ψb). (3.17)

By knowing the models for the observed data and the prior distributions for the unknown model
parameters, a statistical inference for the parameters can be carried out using their posterior distributions
under the Bayesian framework. Given the observed data, the joint posterior density of the parameter
vector θ is expressed as follows:

π(θ, bi|y) = L(θ|y)π(θ). (3.18)

In general, expression (3.18) does not have a closed form, and MCMC procedures can be used to sample
based on (3.18) using the Hamiltonian Monte Carlo (HMC) algorithm. This latest is implemented in the
Stan program along with the Bayesian Regression Models (brms) procedure [21, 22]. This approach is
particularly advantageous, as it allows the developed models to be implemented using the rstan package
in R, which is a freely available software [23]. In this study, the tools and techniques are situated within
a Bayesian framework and rely on the HMC algorithm implemented through rstan. This approach offers
a practical alternative to the computationally expensive traditional MCMC methods, thus making it a
more efficient option for Bayesian inference [4].

4. Simulation experiment

4.1. Data generating process

Considering the potentially asymmetric and skewed nature of infectious disease data [16], a natural
extension of the modeling approach is to adopt a nonlinear mixed-effects model where the random
components (residuals and random effects) are assumed to follow a flexible distribution. One such
distribution is the skew Student-t, a specific case of the SMSN-NLMM framework [12, 13], which
incorporates the degrees of freedom (ν) and the shape parameters (δ) to capture skewness and heavy-
tailed behavior:

Yi j|bi ∼ SMSN1(µi j − η, ω
2
y , δ, ν), bi ∼ SMSNq(−ηb,Ωb, δb, νb)

where µi j = µi j(ϕi) is a non-linear function with the individual parameter vector

ϕi =


ϕ1i

ϕ2i

ϕ3i

ϕ4i

 = Xiβ + bi,
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η and ηb are location shifts used to zero means of residual errors and random effects, respectively. The
intra-individual regression function considered is the derivative of the generalized logistic used to model
COVID-19 death curves from American countries [13], as defined by the following:

µ(xi j; ϕi) =
ϕ1ϕ3iϕ4exp{−ϕ3ixi j}

(ϕ2i + exp{−ϕ3ixi j})ϕ4+1 (4.1)

In this equation, ϕ2i = exp{β2 + b2i}, ϕ3i = exp{β3 + b3i}, and ϕk = exp{βk}, for k = 1; 4, with the
exponential transformation being used to ensure positiveness of the parameters; xi j = ti j is the time of
observation j (1 ≤ j ≤ ni) on individual i (1 ≤ i ≤ n). The nonlinear mixed parameters is particularly
express as follows: ϕi = exp(Xiβ + bi).

Referring to [24], random effects are incorporated into (4.1) to facilitate a multivariate approach and
enable information sharing across different time series. The parameter ϕ3 controls the infection rate,
while ϕ4 acts as an asymmetry parameter. Additionally, ϕ1, ϕ2, and ϕ4 influence the curve’s asymptote,
with the total expected cases given by ϕ1

ϕ
ϕ4
2

. The peak of the curve occurs at the time point t = − ln(ϕ2/ϕ4)
ϕ3

.

The initial infection rate, ϕ3, of an epidemic is a critical measure of disease transmission, as it is often
utilized to estimate the basic reproduction number R0. This key epidemiological parameter, which
represents the average number of secondary infections caused by a single infected individual in a fully
susceptible population, is calculated as R0 = eϕ3T [25].

The parameters of the epidemic model are treated as random variables and assigned specific proba-
bility distributions. To generate data from the epidemic model, each parameter was initially simulated
from its respective distribution (see population values in Table 1). The nonlinear parameters fixed effect
population values are presented in the table with their standard errors in the parenthesis. Then, the
resulting parameter values were used to simulate the dataset. These predefined distributions serve as
benchmarks to evaluate the fitted posterior distributions derived from the simulated dataset.

We simulated M datasets under the assumption that specific infectious disease measurements were
reported daily over two timeframes: a maximum of 1 month for 6 clusters (representing a small dataset)
and a maximum of 1 month for 12 clusters (representing a large dataset), thereby taking clusters
for countries or areas of the country. A limit of quantification for the reported cases was set at 0.0
individuals, meaning any simulated measurements below this threshold were adjusted to 0.0. The
parameter values used in the simulations were from estimates obtained through a nonlinear least squares
(NLS) estimation for fixed effects and the maximum likelihood estimation proposed by [13] applied to
some Latin American countries COVID-19 data (Table 1).

The primary focus of this paper has been to examine the effects of the varying degrees of (in)
accurate prior distributions placed on parameters within the context of FMNLM. Meanwhile, it involves
manipulating the mean (and variance) hyperparameter for the nonlinear parameter priors. Specifically,
informative priors were only placed only on the nonlinear parameters (β ∼ Np(β0,Σ0); β0, Σ0 are
constituted of the defined hyperparameters) in this study (Table 1), while all other parameters were
given completely diffuse priors (refering to [20], [12] and [19]).

Following the systematic evaluation framework of [3], the mean hyperparameter term was determined
as a function of the fixed variance hyperparameter. Specifically, the mean hyperparameter was decreased
by either 1 standard deviation (SD), 3SD, or 5SD based on the fixed variance hyperparameter term.
However, the levels of variance hyperparameters were systematically set, taking either 10.00% (relatively
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low variance), 20.00% (relatively moderate variance), or 50.00% (relatively high variance) of the
corresponding population value. Meanwhile, this setup resulted in nine distinct prior settings: 1SD10,
1SD20, 1SD50, 3SD10, 3SD20, 3SD50, 5SD10, 5SD20, and 5SD50, where αSDγ denotes an αSD
mean hyperparameter and a γ% variance hyperparameter level. This method was deemed the most
straightforward and practical to define the critical conditions of interest in this investigation, thus giving
the infeasibility of exploring all possible combinations of mean and variance hyperparameter conditions.
We refer to [3] for further details.

Table 1 provides a summary of the population model values and their corresponding priors across all
mean and variance hyperparameter levels.

As an example, all mean hyperparameter levels for the first parameter are illustrated in Figure 3. This
figure demonstrates the prior distributions relative to the population value for all nine hyperparameter
levels considered in this study.

For the population value V , the corresponding variance hyperparameters are computed as follows:
Var1 = |V | ∗ 10/100, Var2 = |V | ∗ 20/100, Var3 = |V | ∗ 50/100, with the corresponding SDs:
S D1 =

√
Var1 for 10%, S D2 =

√
Var2 for 20%, and S D3 =

√
Var3 for 50%. For example, the mean

hyperparameters for 10% variance are as follows: V − (1 ∗ S D1), V − (3 ∗ S D1), and V − (5 ∗ S D1) for
1SD, 3SD, and 5SD, respectively.

Figure 3. Mean hyperparameter levels crossed with variance hyperparameter levels.

4.2. Analysis and performance criteria

Under each of the simulation scenarios, we fitted the Bayesian flexible semi-nonparametric multilevel
nonlinear models and the Bayesian flexible parametric multilevel nonlinear models in addition to the
actual normal NLMM to analyse the characteristics of each fitting model.

The Hamiltonian Monte-Carlo (HMC) algorithm has been proposed to be suitable for such a modeling
approach [4]. Meanwhile, we took advantage of brms within the STAN interface in the R software [23]
for the analysis. The population parameters were initialized at the values obtained through the nlme
package setting and the random effects were initialized to zero. The scale parameters were initialized
to 1, while the correlation, shape, and skewness parameters were initialized to zero. We ran 3 chains of
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Table 1. Parameters values.

Parameters Population values
Variance Hyperparameter Levels

10.00% Variance 20.00% Variance 50.00% Variance
Mean Hyperparameter Level: 1SD

β1 1.98 (10−1) N(1.535, 0.198) N(1.351, 0.396) N(0.985, 0.990)
β2 -1.07 (10−1) N(−1.397, 0.107) N(−1.533, 0.214) N(−1.801, 0.535)
β3 -2.89 (10−1) N(−3.428, 0.289) N(−3.650, 0.578) N(−4.092, 1.445)
β4 1.87 (10−1) N(1.438, 0.187) N(1.258, 0.374) N(0.903, 0.935)
σ 3.8
Ω1 0.721
Ω2 0.589
Ω12 -0.097
δ & δb 0.1
ν & νb 1.98

Mean Hyperparameter Level: 3SD
β1 1.98 (10−1) N(0.645, 0.198) N(0.092, 0.396) N(−1.005, 0.990)
β2 -1.07 (10−1) N(−2.051, 0.107) N(−2.458, 0.214) N(−3.264, 0.535)
β3 -2.89 (10−1) N(−4.503, 0.289) N(−5.171, 0.578) N(−6.496, 1.445)
β4 1.87 (10−1) N(0.573, 0.187) N(0.035, 0.374) N(−1.031, 0.935)
σ 3.8
Ω1 0.721
Ω2 0.589
Ω12 -0.097
δ & δb 0.1
ν & νb 1.98

Mean Hyperparameter Level: 5SD
β1 1.98 (10−1) N(−0.245, 0.198) N(−1.166, 0.396) N(−2.995, 0.990)
β2 -1.07 (10−1) N(−2.706, 0.107) N(−3.383, 0.214) N(−4.727, 0.535)
β3 -2.89 (10−1) N(−5.578, 0.289) N(−6.691, 0.578) N(−8.900, 1.445)
β4 1.87 (10−1) N(−0.292, 0.187) N(−1.188, 0.374) N(−2.965, 0.935)
σ 3.8
Ω1 0.721
Ω2 0.589
Ω12 -0.097
δ & δb 0.1
ν & νb 1.98
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400 iterations for each simulated dataset, where we kept 200 iterations per chain for the posterior sample
and the first 200 iterations were considered to ensure convergence (i.e., warm-up = 200 iterations). We
obtained a posterior sample of L = 600 replications for each simulated dataset, where the trace plots
of some simulated datasets were examined to check the convergence of the HMC algorithm based on
the rstan package. In its initial conception, the latest package considered neither the SMSN family nor
the SNP distribution of a random terms specification. However, we refer to the standard N-NLMM
stan code to write the specific flexible stan codes by adding the required parameters following their
stochastic representations (3.6 and 3.13).

We assessed how different priors affect the model convergence rate, parameter estimation, and
computation time. We relied on the effective sample size n̂ES S and its relative Gelman-Rubin statistics
(classic split-Rhat) R̂ to assess the impact of the prior information on the speed of convergence. Then,
we computed the mean of the effective sample sizes and R̂ over the M simulated datasets for each
population parameter θ under each prior scenario. In each simulation condition, the larger the mean of
n̂ES S quantities are, the better the posterior distribution is estimated, and an R̂ indicator close to 1 shows
a good convergence of the chains.

Table 2. Performance measures.

Performance measure Formula Role
θ̄k: M−1∑M

r=1 θ̂
(r)
k Parameters mean esti-

mation
¯̃θk: M−1∑M

r=1 θ̃
(r)
k Parameters median esti-

mation
M̂S Ek: (M)−1∑M

r=1[θ̂(r)
k − Eθk]2 Conformity of posterior

mean

ÂS Ek: (M−1∑M
r=1[Ŝ E

(r)
k ]) Precision on an estimate

RRk: (M)−1∑M
r=1[θ̂(r)

k /Eθk] Precision and accuracy
of an estimate

CR(ĤDI)k
: M−1∑M

r=1 1{θk∈ĤDI
r
k

} Evaluate aptitude of
confidence intervals to
contain Eθk

mean(n̂ES S ): M−1∑M
r=1 n̂r

ES S Measure of sample ef-
fectiveness

mean(R̂): M−1∑M
r=1 R̂r diagnostic tool of good

convergence

For the assessment of the impact of the prior information on the model estimation, we obtained the
parameter estimate empirical standard error (Ŝ Ek = [θ̂(r)

k − Eθk]), the average standard error (ÂS Ek), the
mean squared error (M̂S Ek), and the recovery ratios (RRk) for each parameter based on the converged
simulation replications (see Table 2). The recovery ratios (RR) represent ratios of the estimate/population,
where values closer to 1.0 indicate a proper logistic parameter [3], while the recovery quantity CR(ĤDI)k

is the proportion of datasets for which the simulation mean value is included in the Bayesian highest
posterior density interval [26, 27]. For the M̂S Ek, the values far from 0.00, indicated that the population
values were not properly recovered. Additionally, we recorded the estimation time (in minutes) for each
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replication, and then computed the average estimation time (AET) for all the converged replications.

4.3. Simulation result

The sensitivity to the prior information was assessed, and we checked the conventional convergence
diagnostics tools provided by Stan software. First, we validated the estimation of Bayesian flexible
multilevel nonlinear models parameters using the HMC algorithm through a simulation study. We
assessed the estimators accuracy in terms of the average standard errors (ASE) and the mean of squared
errors (MSE), and handled incertitude using ratios of the estimate/population, where values closer to
1.0 indicate proper epidemic parameters recovery. The Bayesian flexible multilevel nonlinear models
showed different sensitivities compared to the standard normal nonlinear mixed model.

Figure 5 shows the convergence appreciation based on the mean effective sample size for BFMNLM
curve modeling with different nonlinear parameter priors. This figure clearly shows that the levels of
non-informativeness of the priors harm the model convergence. The mean effective sample size over the
200 simulated datasets of parameters were varied (Figure 5). For parameters ϕ1, ϕ2, ϕ3, and ϕ4 fixed
effects knowing the informativeness level, the more accurate the prior was, the faster the convergence
was, translating into higher effective sample sizes under all models (for SMSN-NLMM: mean(n̂ES S (β1))
= (136, 90, 8); mean(n̂ES S (β2)) = (487, 180, 45); mean(n̂ES S (β3)) = (116, 28, 11); mean(n̂ES S (β4)) = (292,
46, 21) for 1SD10, 1SD20 and 1SD50, respectively). On the other hand (knowing prior accuracy level),
the more informative the prior was, the faster the convergence was, translating into higher effective
sample sizes for SMSN-NLMM (mean(n̂ES S (β1, β2, β3, β4)) = (136, 487, 116, 292)) under the highly
informative prior (1SD10) against (146, 196, 170, 179) under the weakly informative prior (3SD10)
and (19, 83, 83, 56) for a highly weak informative prior while the contrast should be concluded on
the standard multilevel nonlinear model (N-NLMM). The less informative the prior was, the faster the
convergence was translating into higher effective sample sizes (mean(n̂ES S (β1, β2, β3, β4)) = (450, 556,
454, 315)) under the non-informative prior (5SD10) against (mean(n̂ES S (β1, β2, β3, β4)) = (168, 291, 129,
87)), under the weakly informative prior (3SD10), and (123, 321, 84, 33) under the highly informative
prior (1SD10). The informative prior seemed to be the most favorable to good convergence for flexible
multilevel nonlinear models, as also confirmed by Gelman Rubin statistic (mean(R̂(β2, β3)) = (1.01,
1.09)) under the highly informative prior (1SD10) against (mean(R̂(β2, β3)) = (1.20, 1.10)) and under
the weakly informative prior (3SD10). However, the weakly (or non) informative prior seemed to be the
most favorable to good convergence for the standard multilevel nonlinear model as mean(R̂(β2, β3)) =
(0.99, 1.02) under the non-informative prior (5SD10) against (mean(R̂(β2, β3)) = (1.02, 1.61)), under the
weakly informative prior (3SD10), and (1.03, 1.48) under the highly informative prior (1SD10).

For each model, the computation time remained stable from one prior scenario to another (Figure
4), thus suggesting a low impact of the prior on the time consumption. It’s noteworthy that the
SMSN-NLMM is about two time more time-consuming in all scenarios compared to SNP-NLMM
and N-NLMM. The average estimation time (min-max) in minutes was 59.7 (55–72) of all scenarios
combined for SMSN-NLMM, 36.3 (31–41) for SNP-NLMM, and 28.3 (20–34) for standard multilevel
nonlinear model.

Tables 3–5 contain two pieces of information aimed at quantifying the difference between the
parameter estimates and the population value. First, the differences between the estimated nonlinear
parameters proportions and the population proportions are presented in terms of ratios, which were
defined earlier. Next, the difference between the estimated model parameters and the population values
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was quantified in terms of the MSE and the ASE where the closer the value was to zero, the more
appreciable the estimates.

Figure 4. Effect of Priors on time consumption for different models based on average
estimation time (AET).

Figure 5. Effect of Priors on model convergence for different models based on the mean of
effective sample size (mean(n̂ES S )).

Figure 6 shows the parameters estimates for different models along with the true parameters values,
while Tables 3–5 present corresponding average standard error (ÂS Ek), the M̂S Ek, and the RR for all
models parameters. The first general result is that under the accurate informative prior, parametric
flexible multilevel nonlinear models (SMSN-NLMM) recover better epidemic nonlinear parameters, as
shown with values closer to the true simulation values (Figure 6). Tables 4 and 5 present results for the
3SD and 5SD mean hyperparameter levels, respectively, and show that the nonlinear parameters were
overall poorly recovered with SMSN-NLMM.
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Figure 6. Effect of Priors on parameters estimation for different models.

Table 3. Average over 200 datasets of the estimated posterior mean corresponding average
standard error (ÂS Ek), mean squared error (M̂S Ek, and recovery ratios (RR) as the ratios of
estimate/population for 1SD Mean Hyperparameter Levels.

Parameters Measures
N-NLMM SMSN-NLMM SNP-NLMM

10% 20% 50% 10% 20% 50% 10% 20% 50%

β1

ASE 0.679 0.953 3.415 0.144 0.639 1.538 1.128 1.771 1.823
MSE 0.120 0.057 3.044 0.024 0.101 0.269 0.176 0.564 0.853
RR 0.546 0.785 -0.866 0.797 0.789 0.452 0.628 0.078 0.260

β2

ASE 0.011 0.160 0.159 0.006 0.043 0.147 0.027 0.112 0.395
MSE 0.008 0.025 0.069 0.012 0.021 0.044 0.010 0.023 0.060
RR 1.271 1.453 1.773 1.325 1.437 1.615 1.305 1.442 1.569

β3

ASE 0.130 0.652 1.907 0.092 0.213 0.426 0.367 1.356 0.929
MSE 0.003 0.090 0.265 0.015 0.031 0.082 0.028 0.109 0.357
RR 0.948 1.168 0.691 0.866 1.188 1.028 0.956 0.915 0.850

β4

ASE 0.538 0.805 1.705 0.016 0.070 0.177 1.523 1.723 1.570
MSE 0.095 0.295 0.204 0.035 0.025 0.345 0.120 0.272 0.332
RR 1.437 1.522 1.003 0.681 0.733 0.824 1.184 0.685 1.208

σ
ASE 0.000 0.000 0.000 0.140 0.205 0.494 0.002 0.001 0.002
MSE 0.143 0.143 0.143 0.007 0.008 0.025 0.143 0.143 0.143

Ω1
ASE 0.518 0.419 0.416 0.047 0.056 0.244 0.513 0.343 0.692
MSE 0.062 0.102 0.079 0.018 0.029 0.031 0.111 0.040 0.039

Ω2
ASE 0.493 0.789 0.956 0.420 0.252 0.216 0.552 0.964 0.814
MSE 0.158 0.078 0.300 0.045 0.117 0.109 0.194 0.415 0.121
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Table 4. Average over 200 datasets of the estimated posterior mean corresponding average
standard error (ÂS Ek), mean squared error (M̂S Ek, and recovery ratios (RR) as the ratios of
estimate/population for 3SD Mean Hyperparameter Levels.

Parameters Measures N-NLMM SMSN-NLMM SNP-NLMM

10% 20% 50% 10% 20% 50% 10% 20% 50%

β1

ASE 0.696 1.695 3.906 0.084 0.571 2.465 1.358 1.819 3.967
MSE 0.428 1.709 4.667 0.196 0.186 0.349 0.286 0.697 3.105
RR -0.025 -0.768 -1.605 0.297 0.416 0.320 0.293 -0.148 -0.539

β2

ASE 0.011 0.101 0.054 0.027 0.037 0.099 0.108 0.083 0.350
MSE 0.098 0.182 0.483 0.098 0.193 0.515 0.088 0.177 0.381
RR 1.928 2.252 3.053 1.929 2.298 3.121 1.857 2.244 2.782

β3

ASE 0.198 0.904 2.110 0.037 0.094 1.060 1.153 1.609 2.271
MSE 0.184 0.338 0.484 0.206 0.395 0.093 0.040 0.170 0.022
RR 1.461 0.739 0.493 1.496 1.686 1.231 1.111 0.802 0.943

β4

ASE 0.741 1.046 1.715 0.026 0.108 0.454 1.385 1.366 2.012
MSE 0.495 0.567 0.316 0.158 0.279 0.743 0.196 0.559 0.055
RR 0.298 0.322 0.541 0.326 0.111 -0.346 0.889 0.408 1.038

σ
ASE 0.000 0.000 0.000 0.302 0.217 0.325 0.001 0.001 0.000
MSE 0.143 0.143 0.143 0.005 0.001 0.053 0.143 0.1435 0.143

Ω1
ASE 0.590 0.496 0.397 0.270 0.114 0.218 0.542 0.532 0.137
MSE 0.449 0.067 0.043 0.013 0.014 0.020 0.013 0.077 0.024

Ω2
ASE 0.504 0.621 0.905 0.368 0.433 0.235 0.961 0.795 1.192
MSE 0.503 0.834 0.509 0.195 0.154 0.131 0.408 0.573 0.235

Table 5. Average over 200 datasets of the estimated posterior mean corresponding average
standard error (ÂS Ek), mean squared error (M̂S Ek, and recovery ratios (RR) as the ratios of
estimate/population for 5SD Mean Hyperparameter Levels.

Parameters Measures N-NLMM SMSN-NLMM SNP-NLMM

10% 20% 50% 10% 20% 50% 10% 20% 50%

β1

ASE 0.418 1.608 3.890 0.068 0.406 1.160 0.957 1.166 1.516
MSE 1.081 1.219 7.045 0.515 0.895 1.752 0.560 1.384 0.290
RR -0.565 -0.643 -2.107 -0.145 -0.496 -0.736 -0.003 -0.508 -0.886

β2

ASE 0.005 0.093 0.091 0.026 0.037 0.173 0.106 0.190 0.804
MSE 0.267 0.519 1.374 0.262 0.529 1.464 0.214 0.419 1.101
RR 2.528 3.125 4.462 2.513 3.150 4.568 2.347 2.827 3.973

β3

ASE 0.030 1.704 2.018 0.064 0.189 1.318 1.201 1.087 1.584
MSE 0.633 0.235 0.524 0.694 1.387 1.102 0.182 0.669 0.289
RR 1.870 1.363 0.542 1.911 2.287 1.670 1.143 0.541 1.319

β4

ASE 0.335 1.072 1.154 0.060 0.388 0.851 1.177 0.783 1.521
MSE 0.741 0.670 0.659 0.448 0.930 0.982 0.442 0.868 0.304
RR -0.192 0.209 0.314 -0.132 -0.629 -0.614 0.375 -0.018 1.354

σ
ASE 0.000 0.000 0.000 0.368 0.331 0.174 0.001 0.001 0.001
MSE 0.143 0.143 0.143 0.012 0.011 0.016 0.143 0.143 0.143

Ω1
ASE 0.255 1.211 0.442 0.712 0.701 0.372 0.849 0.464 0.449
MSE 1.026 0.274 0.074 0.051 0.023 0.018 0.183 0.023 0.050

Ω2
ASE 0.083 0.656 0.535 0.365 0.409 0.301 0.577 0.508 0.849
MSE 0.817 0.820 0.659 0.092 0.235 0.104 0.663 0.830 0.181

However, the SNP-NLMM had facility in recovering epidemic parameters in case of such inaccurate
informative priors (cases of 50% variance hyperparameters) or weakly informative priors (cases of
3SD and 5SD mean hyperparameters), where nonlinear parameters were consistently underestimated
(Figure 6). Given the same mean hyperparameter setting, the uncertainty in estimates increased with

Mathematical Biosciences and Engineering Volume 22, Issue 4, 897–919.



913

the variance hyperparameters values (RRβ1 = (0.797, 0.789, 0.452); ÂS Eβ1 = (0.144, 0.639, 1.538) for
10%, 20%, and 50% variance, respectively). However, the more the mean hyperparameter value is
far from the true value, the more the estimates uncertainty is pronounced (RRβ1 = (0.8, 0.3,−0.1);
M̂S Eβ1 = (0.02, 0.30, 0.52) for 1SD, 3SD and 5SD mean respectively with 10% variance). These
specific results are as indicated in the case of SMSN-NLMM for the SNP-NLMM and N-NLMM
models (see Tables 3–5).

When considering an increased number of clusters, the results in Table 6 show the outperformance
(estimates) of SMSN-NLMM on other models when more time consumption as known. Meanwhile, the
results for varying the mean and variance hyperparameters are as the case of six clusters (SMSN-NLMM:
RRβ2 = (1.331, 1.505, 1.861); RRβ3 = (0.865, 1.020, 0.969); SNP-NLMM: RRβ2 = (1.671, 1.791, 2.067);
RRβ3 = (1.064, 1.192, 1.109); N-NLMM: RRβ2 = (1.279, 1.496, 2.204); RRβ3 = (0.723, 0.797, 0.478) for
10%, 20%, and 50% variance, respectively).

Table 6. Results for different variance Hyperparameter levels of 1SD Mean Hyperparameter
with increased number of included countries (12 clusters).

Models . 1SD10 1SD20 1SD50

β1 β2 β3 β4 β1 β2 β3 β4 β1 β2 β3 β4

N-NLMM
RR 0.32 1.27 0.72 0.98 -0.09 1.49 0.79 0.82 -0.83 2.20 0.85 0.87
MSE 0.28 0.01 0.10 0.26 0.53 0.03 0.09 0.18 2.68 0.18 0.32 0.32
AET 31.99 32.12 22.42

SMSN-NLMM
RR 0.90 1.33 0.86 0.66 1.51 1.51 1.02 0.55 0.88 1.86 0.97 0.12
MSE 0.01 0.01 0.02 0.04 0.12 0.03 0.01 0.08 0.59 0.08 0.02 0.34
AET 57.71 55.72 56.67

SNP-NLMM
RR 0.88 1.67 1.06 1.36 1.03 1.79 1.19 1.35 0.89 2.08 1.11 1.40
MSE 0.07 0.06 0.08 0.17 0.01 0.08 0.09 0.12 0.08 0.14 0.12 0.19
AET 39.35 34.67 38.08

5. Analysis of COVID-19 pandemic in Francophone West Africa

As described earlier, we considered the case of seven Francophone West African countries while
estimating the average behavior of countries in the population and the variability among and within
them during the first 7 months of the pandemic based on the studied approach.

Our modeling strategy was to fit the studied flexible multilevel nonlinear models and present epidemic
interpretations of the results. We referred to our simulation result and Figure 2 to highlight that the
flexible multilevel nonlinear models (SMSN-NLMM) with informative prior is more suitable model to
the considered COVID-19 data. The code for the application of the proposed Bayesian flexible multilevel
nonlinear models, with other necessary r codes, stan codes, and the considered COVID-19 data in the
case of this study, is available through the GitHub link https://github.com/mathildeadeoti/BFMNLM-
and-Prior. Figure 7 shows the fitting output, while the Table 7 presents keys epidemiological statistics
that indicate the dynamics of COVID-19 in the seven west African countries and per country.

The figure confirmed how likely the model fits the data trajectory better by considering the inter-
variability of countries. Table 7 includes the estimated total number of cases (T EC : Total Est Cases)
at the end of the pandemic, the estimated peak time (EPT : Est Peak Time), and the basic reproduction
numbers (R0) based on flexible multilevel nonlinear models (SMSN-NLMM) with the informative
prior. It showed a great heterogeneity in the region in terms of epidemic dynamic (Total Est Cases,
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Est Peak Time, etc.). This is clearly understandable as the population density and testing efforts were
not homogeneous [28]. In most countries, the model estimated an average of one new case of infection
caused by an infected individual during the infectious period (R0 ≈ 1). The estimated total number of
cases (Total Est Cases) serves as a reference to determine whether one country is probably at the end
of the pandemic or not, while Est Peak Time indicates whether the worst phase has passed.

Figure 7. Fitted curve for the SMSN-NLMM (blue line), along with real data (black) for each
country.

The results show that the final sizes of the epidemic were estimated to be relatively larger in Senegal,
Ivory-Coast, and Guinea compared to all other countries with an estimated number of 16,607, 16,297,
and 10,111 cases, respectively, before expecting the end of the pandemic. For the remaining countries,
namely Burkina-Faso, Mali, Benin, and Niger, the epidemic reached its final size at 4798, 4255, 3846,
and 2644 reported cases, respectively. The peak time was estimated at 74, 90, 105, 110, 118, and
127 days from the first detected case date for Mali, Niger, Benin, Ivory-Coast, Senegal, and Guinea,
respectively, whereas it was relatively larger for Burkina-Faso (around 153 days). This means that the
epidemic progression is relatively slower in the latter country compared to the former (as confirmed in
the fitted trajectories on Figure 7). In general, the estimated peak times range along with the observed
true peak time, while their estimated reported peak sizes accounted for less than 1% of their population
size, on average (Table 7, Figure 7). This underlined that all the considered countries would reach their
peak with less than 1% of their population being affected.

The basic usefulness of the approach was confirmed from the estimates of the parameters (ϕ̂k) of
the logistic dynamic of the model. The result corroborate the assumption on the data, as the estimated
ϕ̂4 ≫ 1 indicates a right skewness for the West African countries pandemic data, thus suggesting that
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the increased phase occurs much faster than the decrease phase in many of the countries.

Table 7. Nonlinear mean curve fitted parameters (ϕ̂k, k = 1, 2, 3, 4); estimated total number
of cases (T EC : Total Est Cases) at the end of the pandemic and estimated peak time
(EPT : Est Peak Time) based on the flexible SMSN-NLMM for the seven Francophone
West-Africa countries.

Cluster ϕ1 ϕ2 ϕ3 ϕ4 T EC EPT R0 First case
Benin

7.377

0.410 0.022

4.250

3846 105 1.167 16/03/2020
Burkina Faso 0.389 0.015 4798 153 1.115 10/03/2020
Guinea 0.327 0.020 10,111 127 1.150 13/03/2020
Ivory-Coast 0.292 0.024 16,297 110 1.840 11/03/2020
Mali 0.400 0.031 4255 74 1.249 25/03/2020
Niger 0.448 0.025 2644 90 1.890 20/03/2020
Senegal 0.291 0.023 16,607 118 1.172 02/03/2020

6. Discussion

While compartmental models and other statistical tools are most commonly used in epidemic
modeling [16, 29, 30], NLMMs have received particular attention due to their flexibility in handling the
heterogeneous and unbalanced repeated measures data that can arise in infectious disease modeling.
Although flexible multilevel nonlinear curve modeling has been proposed, especially in the Bayesian
approach, the effect of the parameter prior distribution has not been fully studied.

A sensitivity analysis procedure relatively to the specification of priors can assess the sensitivity
of the posterior densities to the choice of prior distributions [31]. Informative priors can have an
impact on estimates, even if little methodological research has directly focused on this matter, as
previously reported [3]. Basically, this process is a means to investigate the robustness of a model
by systematically changing priors to assess the impact of those changes. That is, this paper simply
reconsidered the proposed Bayesian multilevel nonlinear models by making reasonable modifications to
the prior assumptions, recomputing the posterior quantities of interest, and observing whether they have
changed in a way that significantly affects the resulting interpretations or conclusions.

Our results corroborate with the one of [32] for the fact that outliers influence the computation
time. Therefore, the proposed model based on the scale mixture of skew normal distribution is
more time consuming than the standard. Additionally, the results clearly showed that the levels of
non-informativeness of the priors harmed the model convergence. For logistics parameters ϕ1, ϕ2,
ϕ3, and ϕ4 fixed effects knowing informativeness level, the more accurate the prior, the faster the
convergence translated into higher effective sample sizes for the studied flexible multilevel nonlinear
model (SMSN-NLMM). Therefor, the informative prior seemed to be the most favorable to a good
convergence for flexible multilevel nonlinear models as confirmed by the Gelman Rubin statistic, while
the weakly (or non) informative prior would be the most favorable to a good convergence for either the
semi-nonparametric nonlinear mixed model or the standard multilevel nonlinear model.

The analysis of such complex epidemic data requires more consideration due to some inherent
features: countries at different stages of pandemic, outliers in the response, and the specific case of
Francophone West African countries considered in this study, with several consecutive days with zero
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detected cases mainly due to their test capacity. As a flexible multilevel modeling, the fitted curve
(Figure 7) showed an increased sensitivity to outliers and variations of the epidemic stages; this can either
positively or negatively influence the analysis or interpretations. It’s advisable to consider estimates and
computable key epidemic parameters for rational analyses of the fitting trajectories.

One of the advantages of the Bayesian approach is that the uncertainty in all parameter values is taken
into account through the use of prior distributions [33]. However, priors have also been pinpointed as
being one of the main drawbacks to this framework as a result of the inherent subjectivity that is coupled
with choosing prior distributions and the corresponding hyperparameters. Meanwhile, the actual impact
of prior distributions is an important research topic to explore within Bayesian estimation. Although
(non) informative priors can have a large impact on the estimates (see, e.g., [34]), little methodological
research has directly focused on this matter. Most researches explore a feature of the sample size used
for an estimation in the data analysis within any estimation framework. However, this issue of sample
sizes is closely tied to the use of prior distributions within the Bayesian estimation. Research has
indicated that even noninformative priors can impact the estimates using larger sample sizes. Then, it is
important to never underestimate the impact of a prior distribution, regardless of the sample size, as
previously underlined [35]. Meanwhile, this paper endorsed the use of the proposed methodology that
jointly accommodated the different stages of the diseases while borrowing information of the different
time series to provide a more robust and reliable fit and prediction. With such a joint accommodation,
we strongly believe that this methodology of Bayesian flexible multilevel nonlinear models can provide
more reliable and meaningful predictions that allow policymakers around the world to make effective
decisions.

7. Conclusions

Bayesian flexible multilevel nonlinear models are powerful tools to analyze infectious disease data
with asymmetric and unbalanced structures, such as varying epidemic stages across countries. This
study investigated how varying levels of prior informativeness can influence the model convergence,
parameter estimation, and computation time in a Bayesian FMNLM. The key finding from this study is
outlined as follows:

- Outliers influence the computation time, thus leading to more time consuming of flexible multilevel
nonlinear model, though the levels of informativeness of the priors do not harm model computation
time;

- The results clearly show that the levels of non-informativeness of the priors harm the model
convergence;

- Knowing the informativeness level, the more accurate the prior, the faster the convergence for the
studied flexible multilevel nonlinear model (SMSN-NLMM);

- The weakly (or non) informative prior is the most favorable to a good convergence of either the
semi-nonparametric nonlinear mixed model or the standard multilevel nonlinear model;

- Under an accurate informative prior, the parametric flexible multilevel nonlinear models (SMSN-
NLMM) recover the epidemic nonlinear parameters better;

- Giving the same mean hyperparameter setting, the uncertainty in estimates increases with the
variance hyperparameters values;

- The cluster size or number of countries/areas have no impact on the estimates of Bayesian FMNLM.
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